If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-15x-19=0
a = 2; b = -15; c = -19;
Δ = b2-4ac
Δ = -152-4·2·(-19)
Δ = 377
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{377}}{2*2}=\frac{15-\sqrt{377}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{377}}{2*2}=\frac{15+\sqrt{377}}{4} $
| 1/9(2m-160=1/3(2m+4) | | 7^(3x-2)=5^x | | L(1+x^2)-1=0 | | -(4v-6+5v)+(9-5v+3-2v)=7v-(1-6v) | | 5x+2=7x-4= | | 6x^2+56x-18=0 | | 3w+6/28=3/4 | | m(m-4)+4=0 | | 12d2=-27d | | X×2+x+1×3+x+2×4=74 | | 13-4=3x+4+2x-4 | | 20g2-16g+0=0 | | 2x+3x+1+4x+2=74 | | 10(s-4)=68 | | x^2+3.14(x/2)^2=1400 | | x^2+π(x/2)^2=1400 | | 4(4s+2)=88 | | (4y)^2-8(2^2y)+16=0 | | P(x)=x^2+6x+9 | | x+3/3=6 | | (4)^2-8(2^2y)+16=0 | | 16y^2-3y+1=0 | | 4)^2-8(2^2y)+16=0 | | 3z/10-5=-4 | | x^2=70^2+120^2 | | -2x-6=-3+x+3 | | x3+-13x+-18=0 | | 70/35=10/x | | 12x-4x^=0 | | 7x/2x^2-9=1 | | Z^@=9i | | 937538262917*583036284241=x |